Finite size effects in the averaged eigenvalue density of Wigner random-sign real symmetric matrices.

نویسندگان

  • G S Dhesi
  • M Ausloos
چکیده

Nowadays, strict finite size effects must be taken into account in condensed matter problems when treated through models based on lattices or graphs. On the other hand, the cases of directed bonds or links are known to be highly relevant in topics ranging from ferroelectrics to quotation networks. Combining these two points leads us to examine finite size random matrices. To obtain basic materials properties, the Green's function associated with the matrix has to be calculated. To obtain the first finite size correction, a perturbative scheme is hereby developed within the framework of the replica method. The averaged eigenvalue spectrum and the corresponding Green's function of Wigner random sign real symmetric N×N matrices to order 1/N are finally obtained analytically. Related simulation results are also presented. The agreement is excellent between the analytical formulas and finite size matrix numerical diagonalization results, confirming the correctness of the first-order finite size expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit Theorems for Spectra of Random Matrices with Martingale Structure

We study classical ensembles of real symmetric random matrices introduced by Eugene Wigner. We discuss Stein’s method for the asymptotic approximation of expectations of functions of the normalized eigenvalue counting measure of high dimensional matrices. The method is based on a differential equation for the density of the semi-circular law.

متن کامل

Asymptotic corrections to the Wigner semicircular eigenvalue spectrum of a large real symmetric random matrix using the replica method

The replica method has previously been used to calculate the semicircular averaged eigenvalue spectrum of the Gaussian orthogonal ensemble of real symmetric N x N random matrices in the limit where N + CC. In this paper we develop a perturbative scheme which, within this same replica framework, is used to calculate the corrections within this semicircular band of eigenvalues to order 1/ N and 1...

متن کامل

The largest eigenvalue of finite rank deformation of large Wigner matrices: convergence and non-universality of the fluctuations

In this paper, we investigate the asymptotic spectrum of complex or real Deformed Wigner matrices (MN)N defined by MN = WN/ √ N + AN where WN is a N × N Hermitian (resp. symmetric) Wigner matrix whose entries have a symmetric law satisfying a Poincaré inequality. The matrix AN is Hermitian (resp. symmetric) and deterministic with all but finitely many eigenvalues equal to zero. We first show th...

متن کامل

Eigenvalue Separation in Some Random Matrix Models

The eigenvalue density for members of the Gaussian orthogonal and unitary ensembles follows the Wigner semi-circle law. If the Gaussian entries are all shifted by a constant amount c/(2N)1/2, where N is the size of the matrix, in the large N limit a single eigenvalue will separate from the support of the Wigner semi-circle provided c > 1. In this study, using an asymptotic analysis of the secul...

متن کامل

Eigenvalue variance bounds for Wigner and covariance random matrices

This work is concerned with finite range bounds on the variance of individual eigenvalues of Wigner random matrices, in the bulk and at the edge of the spectrum, as well as for some intermediate eigenvalues. Relying on the GUE example, which needs to be investigated first, the main bounds are extended to families of Hermitian Wigner matrices by means of the Tao and Vu Four Moment Theorem and re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E

دوره 93 6  شماره 

صفحات  -

تاریخ انتشار 2016